strategy+business is published by PwC Strategy& Inc.
or, sign in with:
strategy and business
Published: February 28, 2006


Research Meets Practice

Personalized Medicine
Although decreasing friction in research and clinical information flow is important today, it will become even more important as care becomes increasingly customized to an individual’s genetic characteristics. Today we create drugs for populations that are differentiated mostly by the disease or condition they happen to have — arthritis, hypertension, elevated cholesterol, non-Hodgkin’s lymphoma. For often unclear reasons, drugs work better for some than others and produce side effects that vary from person to person. This variability is probably due in some cases to subtle differences in genetic characteristics of the individuals taking these drugs, and, in the case of cancer patients, genetic differences of the cancer tissue. As research reveals the underlying genetic differences that drive the different responses to the same drugs, compounds that are tailored to the genetic characteristics of individuals will be created.

This will improve drug efficacy and safety while creating challenges in clinical trial recruitment. In the future, our fictional oncologist, Dr. Kelly, may not be looking merely for glioma patients with normal liver and kidney function. She may be looking for glioma patients with certain genetic characteristics. Instead of choosing from the universe of existing glioma patients, which is already a relatively small population, she will be looking for a subset, say the 20 percent of glioma patients with certain genetic characteristics that correlate with a higher response rate to the drug she is testing.

In this environment it will be vital to use national networks to identify patients for clinical trials. Without such networks, the costs of recruitment will continue to climb and will become increasingly disproportionate to the size of the market for which a given drug is relevant. In some cases, the costs of development will become prohibitive and the drug will not be produced. In other cases, the cost of the drug will be significantly higher than it otherwise would have been, and will create added financial stress for organizations already buckling under the pressures of health-care costs. The promise of personalized medicine will not be fully realized until information networks link researchers with community caregivers and the patients they serve.

Weak Ties, Strong Science
In the process of linking scientists and practitioners through an informatics network, not only is the transfer of information being facilitated, but vital social ties between individuals and social systems that previously had no reliable links are being created. Such “weak links,” or casual and informal social ties and connections, are easily fostered by electronic networks and have been shown to be effective in exposing people to types of information they are unlikely to encounter in their usual social environments.

For example, sociologist Mark Granovetter studied job referrals in the early 1970s and found that attractive opportunities were unlikely to come from close friends and coworkers, who travel in the same social circles. By linking researchers in different “ivory tower institutions” with one another, and then linking them with community-based medical caregivers “in the trenches,” this new network will facilitate a web of weak social ties.

This should be the broader objective of any new research-oriented electronic network: to enable the sharing of information and knowledge across different disciplines and thus create a more robust network in the research and practitioner communities. Although the Internet has provided a way for highly motivated actors to forge weak social ties with one another, there can be time and effort barriers that make it difficult for beleaguered physicians like William’s doctor to identify researchers doing highly specialized clinical trials. In other cases, as with the research teams in Seattle and Baltimore, information systems that speak different scientific dialects prevent scientists in different social networks from sharing information with one another. Bringing these communities together in the service of science and patients promises to provide synergies in both domains that could not have otherwise been achieved.

Follow Us 
Facebook Twitter LinkedIn Google Plus YouTube RSS strategy+business Digital and Mobile products App Store