strategy+business is published by PwC Strategy& LLC.
or, sign in with:
strategy and business
 / Autumn 2011 / Issue 64(originally published by Booz & Company)


A Strategist’s Guide to Digital Fabrication

Tools of Change

The first step in building this new manufacturing business model is to take stock of the new fabrication tools. Digital fabrication devices fall into two categories. The first is programmable subtractive tools, which carve shapes from raw materials. These include laser cutters (which cut flat sheets of wood, acrylic, metal, cardboard, and other light materials), computer numerical control (CNC) routers and milling machines (which use drills to produce three-dimensional shapes), and cutters that use plasma or water jets to shape material.

The second category is additive tools, which are primarily computer-controlled 3-D printers that build objects layer by layer, in a process known as fused deposition modeling. They work with a wide variety of materials: thermoplastics, ceramics, resins, glass, and powdered metals. Technically known as “additive rapid manufacturing” devices, 3-D printers also use lasers or electron beams to selectively shape the source material into its final form. Because additive devices require little setup time, they make possible the production of any quantity at the same cost per unit, and also allow easy, rapid switching between products. A single machine can shift from making combs to making clamps to making iPhone stands within minutes. In some cases, a 3-D printer can fabricate in a single piece an object that would otherwise have to be manufactured in several parts and then assembled. And because it composes objects bit by bit, instead of carving them from larger blocks, additive manufacturing considerably reduces the waste of materials.

Additive technologies have been following a path comparable to that of Moore’s Law; the capabilities of the devices are growing and the cost is decreasing exponentially. In 2001, the cheapest 3-D printer was priced at $45,000; by 2005, the cost had dropped to $22,900, and now you can buy a professional 3-D printer for less than $10,000, an open source personal version for less than $4,000, and a desktop do-it-yourself kit for less than $1,500. Subtractive tools, such as laser cutters and CNC routers, have also become more affordable, mostly because manufacturers have produced models to fit the low-volume needs (and lower budgets) of small businesses, schools, and individuals. Most of these digital fabrication devices no longer require custom CAD software and extensive training. They can follow designs created by people using mainstream programs like Adobe Illustrator or even using iPad apps; the techniques can be learned in an afternoon.

To be sure, digital fabrication tools have limits. Currently, they are best suited to production runs of 1,000 items or less. Although a few high-end routers and cutters are fast enough to produce dozens of products in an hour, 3-D printers can’t yet make goods with the same speed as traditional injection molding. Some 3-D printers can combine different types of plastic (to make, for example, a hairbrush with a hard plastic body and soft bristles), but this kind of hybrid printing is still a high-end process. Most can handle only one type of material at a time. Metals and other nonplastic materials require specialized devices. Thus far, no digital fabrication device, professional or personal, can efficiently produce in one fell swoop a complex multi-material product such as a mobile phone.

Follow Us 
Facebook Twitter LinkedIn Google Plus YouTube RSS strategy+business Digital and Mobile products App Store



  1. Limor Fried and Phillip Torrone, “Million Dollar Baby,” 2010 (PDF): Overview presentation of open source hardware companies by Adafruit.
  2. Phillip Torrone, “Open Source Hardware 2009,” 2009, : List and overview of open source hardware projects in existence in 2009.
  3. Edward Tse, Kevin Ma, and Yu Huang, “Knockoffs Come of Age,” s+b, Autumn 2009: Introduction to China’s shan zhai companies and their transition from piracy to competitive innovation.
  4. Eric von Hippel, Jeroen De Jong, and Steven Flowers, “2010: Comparing Business and Household Sector Innovation in Consumer Products: Findings from a Representative Study in the UK,” 2010: Survey of the development and modification of consumer products by product users in a representative sample of 1,173 U.K. consumers age 18-plus.
  5. Wohlers Associates, “Wohlers Report 2011,” 2011: Yearly in-depth analysis of the additive manufacturing industry worldwide.
  6. For more on this topic, see the s+b website at:
Sign up to receive s+b newsletters and get a FREE Strategy eBook

You will initially receive up to two newsletters/week. You can unsubscribe from any newsletter by using the link found in each newsletter.